Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(12)2022 06 18.
Article in English | MEDLINE | ID: covidwho-1963959

ABSTRACT

Being aware of global pandemics, this research focused on the potential infection routes in building drainage systems. Case studies have found that dysfunctional building drainage systems not only failed to block contaminants but also potentially became a route for the spreading of viruses. Several fluid simulations in pipelines were conducted in this research using COMSOL Multiphysics. In particular, virus transmission from one patient's room to other uninfected residential units through pipelines was visualized. A 12-story building, which is commonly seen in the local area, was designed as a simulation model to visualize the transmission and analyze its hazards. Furthermore, five environmental factors were filtered out for discussion: distance, time span, pressure, initial concentration, and environment temperature. By manipulating these factors, the relationship between the factors and the behavior of the contaminant could be explored. In addition, a simulation with a different pipeline arrangement was included to observe the virus diffusion behavior under different scenarios. The visualized simulation concluded that the contaminant would spread through the drainage system and arrive at the neighboring four floors within an hour under the circumstances of a 12-story building with broken seals and constant pressure and contaminant supply on the seventh floor. Meanwhile, the whole building would be exposed to infection risks by the continuous virus spreading through a drainage system. Distance, time span, and pressure were considered critical factors that affected indoor contamination in the system. On the other hand, initial concentration and environmental temperature did not have significant roles. Visualizing the behavior of viruses provides a glimpse of what happens behind walls, paving the way for recognizing the importance of maintaining functional drainage systems for individuals' health.


Subject(s)
COVID-19 , Computer Simulation , Humans , Pandemics
2.
International Journal of Environmental Research and Public Health ; 19(12):7475, 2022.
Article in English | MDPI | ID: covidwho-1893900

ABSTRACT

Being aware of global pandemics, this research focused on the potential infection routes in building drainage systems. Case studies have found that dysfunctional building drainage systems not only failed to block contaminants but also potentially became a route for the spreading of viruses. Several fluid simulations in pipelines were conducted in this research using COMSOL Multiphysics. In particular, virus transmission from one patient's room to other uninfected residential units through pipelines was visualized. A 12-story building, which is commonly seen in the local area, was designed as a simulation model to visualize the transmission and analyze its hazards. Furthermore, five environmental factors were filtered out for discussion: distance, time span, pressure, initial concentration, and environment temperature. By manipulating these factors, the relationship between the factors and the behavior of the contaminant could be explored. In addition, a simulation with a different pipeline arrangement was included to observe the virus diffusion behavior under different scenarios. The visualized simulation concluded that the contaminant would spread through the drainage system and arrive at the neighboring four floors within an hour under the circumstances of a 12-story building with broken seals and constant pressure and contaminant supply on the seventh floor. Meanwhile, the whole building would be exposed to infection risks by the continuous virus spreading through a drainage system. Distance, time span, and pressure were considered critical factors that affected indoor contamination in the system. On the other hand, initial concentration and environmental temperature did not have significant roles. Visualizing the behavior of viruses provides a glimpse of what happens behind walls, paving the way for recognizing the importance of maintaining functional drainage systems for individuals' health.

3.
Int J Environ Res Public Health ; 18(11)2021 06 04.
Article in English | MEDLINE | ID: covidwho-1259485

ABSTRACT

Time-variant positive air pressure in a drainage stack poses a risk of pathogenic virus transmission into a habitable space, however, the excessive risk and its significance have not yet been sufficiently addressed for drainage system designs. This study proposes a novel measure for the probable pathogenic virus transmission risk of a high-rise drainage stack with the occurrence of positive air pressure. The proposed approach is based on time-variant positive air pressures measured in a 38 m high drainage stack of a full-scale experimental tower under steady flow conditions of flow rate 1-4 Ls-1 discharging at a height between 15 m to 33 m above the stack base. The maximum pressure and probabilistic positive air pressures in the discharging stack ventilation section with no water (Zone A of the discharging drainage stack) were determined. It was demonstrated that the positive air pressures were lower in frequency as compared with those in other stack zones and could propagate along the upper 1/3 portion of the ventilation pipe (H' ≥ 0.63) towards the ventilation opening at the rooftop. As the probabilistic positive pressures at a stack height were found to be related to the water discharging height and flow rate, a risk model of positive air pressure is proposed. Taking the 119th, 124th, 140th and 11,547th COVID-19 cases of an epidemiological investigation in Hong Kong as a baseline of concern, excessive risk of system overuse was evaluated. The results showed that for a 20-80% increase in the frequency of discharge flow rate, the number of floors identified at risk increased from 1 to 9 and 1 to 6 in the 34- and 25-storey residential buildings, respectively. The outcome can apply to facilities planning for self-quarantine arrangements in high-rise buildings where pathogenic virus transmission associated with drainage system overuse is a concern.


Subject(s)
COVID-19 , Air Pressure , Hong Kong , Humans , Models, Theoretical , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL